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Abstract

The development of high-throughput, data-intensive biomedical research assays and technologies, 

such as DNA sequencing, imaging protocols, and wireless health monitoring devices, has created a 

need for researchers to develop strategies for analyzing, integrating and interpreting the massive 

amounts of data they generate. Although a wide variety of statistical methods have been designed 

to accommodate the ‘big data’ produced by these assays, experiences with the use of artificial 

intelligence (AI) techniques suggest that they might be particularly appropriate. In addition, the 

application of data-intensive biomedical technologies in research studies has revealed that humans 

vary widely at the genetic, biochemical, physiological, exposure and behavioral levels, especially 

with respect to disease processes and treatment responsiveness. This suggests that there is often a 

need to tailor, or ‘personalize,’ medicines to the nuanced and often unique features possessed by 

individual patients. Given how important data-intensive assays are to revealing appropriate 

intervention targets and strategies for personalizing medicines, AI can play an important role in the 

development of personalized medicines at all relevant phases of the clinical development and 

implementation of new personalized health products, from finding appropriate intervention targets 

to testing them for their utility. We describe many areas where AI can play a role in the 

development of personalized medicines, and argue that AI’s ability to advance personalized 

medicine will depend critically on the refinement of relevant assays and ways of storing, 

aggregating, accessing and ultimately integrating the data they produce. We also point out the 

limitations of many AI techniques, as well as consider areas for further research.

INTRODUCTION: EMERGING THEMES IN BIOMEDICAL SCIENCE

Modern biomedical science is guided, if not dominated, by many interrelated themes. Four 

of the most prominent and important of these themes are (see Figure 1): 1. Personalized 

medicine, or the belief that health interventions need to be tailored to the nuanced and often 

unique genetic, biochemical, physiological, exposure and behavioral features individuals 

possess; 2. The exploitation of emerging data-intensive assays, such as DNA sequencing, 

proteomics, imaging protocols, and wireless health monitoring devices; 3. ‘Big data’ 

research paradigms in which massive amounts of data, say of the type generated from 

emerging data-intensive biomedical assays, are aggregated from different sources, 

Address correspondence to: Nicholas J. Schork, Ph.D., Department of Quantitative Medicine, The Translational Genomics Research 
Institute (TGen), 445 North Fifth Street, Phoenix, AZ 85004, nschork@tgen.org. 

HHS Public Access
Author manuscript
Cancer Treat Res. Author manuscript; available in PMC 2020 October 22.

Published in final edited form as:
Cancer Treat Res. 2019 ; 178: 265–283. doi:10.1007/978-3-030-16391-4_11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



harmonized, and made available for analysis in order to identify patterns that would 

normally not be identified if the different data points were analyzed independently; and 4. 

Artificial Intelligence (AI; which we consider here to include algorithms based machine 

learning, deep learning, neural network constructs and a wide variety of related 

techniques[1]), which can be used to find relevant patterns in massive data sets.

These four themes are highly interrelated in that, e.g., personalizing a medicine or tailoring 

an intervention to a patient requires a very deep understanding of that patient’s condition and 

circumstances, and this requires the extensive use of sophisticated assays that generate 

massive amounts of data, such as DNA sequencing or an imaging protocol. Essentially, the 

data produced by these assays needs to be organized so that analyses can be pursued to 

identify features that the patient possesses that may indicate the optimal intervention. 

Research associated with each of these themes is often pursued independently of the others 

because of the very specialized expertise required. For example, there are scientific journals 

devoted to Personal Medicine (e.g., ‘Personalized Medicine,’ ‘Journal of Personalized 

Medicine’), emerging assays (e.g., ‘Nature Biotechnology,’ ‘Nature Digital Medicine’), big 

data (e.g., ‘Big Data,’ ‘Journal of Big Data,’ ‘Gigascience’), and artificial intelligence (e.g., 

‘IEEE Transactions on Neural Networks and Learning Systems,’ ‘IEEE Transactions on 

Pattern Analysis and Machine Intelligence’) that publish very focused studies. However, the 

integrated use of the insights, information and strategies obtained from research associated 

with each of these themes is necessary for creating personalized health products, such as 

drugs and interventions.

Bringing together research activities associated with these four emerging themes is not 

trivial, as it will require communication and participation from researchers and practitioners 

with a wide variety of skills and expertise, including molecular biology, genetics, pathology, 

informatics, computer science, statistics, clinical science, and medicine. AI will have a 

special role to play in this integration process if the goal is to advance personalized 

medicine, since it is unclear how relevant clinically-meaningful insights can be drawn from 

big data-generating assays that would complement or build off the insights from experts in 

different domains. In this light, there are a number of phases in the development of 

medicines, general interventions, and other products, such as diagnostics, prognostics, 

decision support tools, etc., where AI could have a significant impact. These different phases 

are emphasized in subsections of this chapter that describe and comment on recent studies 

leveraging AI. This chapter does not provide an exhaustive literature review of AI in 

medicine, however, as there are some excellent reviews for this[2–4], but rather considers the 

potential that AI has in developing new medicines, health devices and products. In particular, 

a focus on the need for greater integration across the various phases of the development of 

health interventions and products could result in very radical yet positive changes in the way 

medicine is practiced. In this sense, this chapter is as much a summary of the ways in which 

AI can be exploited in modern medicine as it is a vision of the future.

THE TRANSLATIONAL WORKFLOW

As noted, the development of interventions and health products, as with the diagnosis and 

treatment of a patients, proceeds in different phases. There are various ways of defining and 
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referring to these phases, however, and all of them point to opportunities for AI to have a 

substantial impact if leveraged appropriately. For example, in the context of clinical trials to 

vet a new drug or intervention for treating a disease like cancer, a common progression or 

workflow runs from Phase 0 trials, which involve characterizing the pharmacokinetic 

properties of a drug using what may turn out to be non-physiologic (i.e., does not have an 

appreciable effect on the body) and physiologic (i.e., does have an appreciable effect on the 

body) doses of a drug in a very small number of individuals, to Phase I trials, which involve 

establishing safe and effective doses of a drug in small number of individuals, to Phase II 

trials, which seek to establish whether a drug is likely to be efficacious in a moderately sized 

group of individuals, to Phase III trials, which attempt to establish the utility of a drug in the 

population at large by studying a very large number of individuals, to Phase IV trials, which 

evaluate the adoption, uptake and acceptance, as well as any evidence for adverse 

consequences, associated with the use of the drug in the population at large.

We take a broader view of the workflows behind developing new products than that reflected 

in the traditional clinical trial progression. This broader view is consistent with the scheme 

used by, for example, the National Institutes of Health (NIH)’s Clinical and Translational 

Science Award (CTSA) program.[5] The CTSA program focuses on all aspects of 

biomedical science associated with attempts to translate very basic biomedical insights 

concerning, e.g., pathogenic processes contributing to diseases, into clinically-useful 

products like drugs or interventions for those diseases. The CTSA scheme does, however, 

incorporate elements of the Phase 0-Phase IV clinical trials workflow or transition scheme 

for developing drugs or health products to treat or manage diseases in the population at 

large. Thus, in accordance with the CTSA scheme (left panel of Figure 2), T0 science 

involves very basic research focusing on that could lead to the identification of a drug or 

intervention target and then crafting an appropriate drug or intervention that modulates that 

target; T1 science focuses on testing an intervention or health device in a small clinical 

studies to determine if it is safe and at what dosages it should be used; T2 science involves 

vetting the drug or device in a large number of individuals in a well-designed study to assess 

its efficacy in the population at large; T3 science focuses on the implementation of the drug 

or device for use in the population, including adapting existing workflows (e.g., custody 

chains for tests or physician-patient interaction points); and T4 science involves a re-

evaluation or assessment of the utility of the drug or device post-deployment and 

implementation. Each of these phases can leverage AI techniques if the right data and 

motivation is present.

The actual practice of personalized medicine can be seen as involving an analogous process 

to the develop of drugs and health devices (right panel of Figure 2; see also Schork and 

Nazor [6]). Thus, P0 activity involves making a diagnosis or determining an individual’s risk 

of diseases; P1 activity involves identifying the key pathophysiologic processes, if not 

known, that are causing (or likely to cause) a disease that might be amenable to modulation 

by an appropriate intervention; P2 considers the identification of an appropriate intervention 

given what was identified in the P0 and P1 stages; P3 involves testing the intervention on the 

relevant individual undergoing the diagnosis and pathobiology assessment; and P4 involves 

warehousing the result in appropriate databases so that the insights and information obtained 
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on a patient can be exploited in examinations of further patients or used in broader data 

mining initiatives to find further clinically-meaningful patterns.

A couple of items about these workflows are worth noting. First, as noted, although the 

science associated with each component involves unique insight and expertise and provide a 

fertile ground for collaborations with AI tools and scientists independently of the other 

components, the transmission of information from one component to another – or the 

transitions from one component to another – is of crucial importance (e.g., consider that a 

diagnostic would not be particularly useful if it did not help a physician choose an 

appropriate course of action). Second, a goal of personalized medicine, and the improvement 

of health care generally, is to make workflows like those in Figure 2 more efficient and 

reliable and AI can have a substantial role to play in this broader goal. These two notes are 

emphasized in the subsection on ‘Integration and the Personalized Medicine 

Workflow‘ below.

PRECLINICAL (T0) AND DIAGNOSTIC (P0) RESEARCH

The identification of targets for therapies (T0 research from the left hand side of Figure 2) 

can be greatly aided by AI in quite a few contexts. For example, many assays used to 

uncover potential therapeutic targets generate massive amounts of data and as such often 

require sophisticated statistical methods to identify meaningful patterns. AI has been used to 

identify such patterns from, e.g., DNA sequence data and molecular pathology imaging 

protocols.[7–10] For individual patients whose comprehensive diagnosis may lay the 

foundation for crafting a personalized treatment or intervention plan and exploit data-

intensive assays (i.e., P0 in the right hand figure of Figure 2), many AI-based tools can be 

leveraged. For example, mining DNA sequence information obtained from an individual in 

order to make a genetic diagnosis of a disease can be greatly aided by AI-based analyses.[7] 

In addition, facilitating, e.g., cancer diagnoses with AI-based analyses of blood analytes has 

been shown to have great potential.[11]

If a particular therapeutic target has been identified that is consistent with the molecular 

pathology underlying an individual patient’s disease, then AI-based strategies for analyzing 

drug screening data collected to determine if any of a large number of extant drugs and 

compounds have activity against that target have been shown to be very reliable.[12] In 

addition, AI-based studies have been shown to reveal a great many insights into how drugs 

and compounds may impact various structural and functional features of a cell.[13] Finally, 

web sites with large databases like DeepChem (https://deepchem.io/about.html), which 

leverage AI in chemistry settings, can be used specifically to identify properties of drugs and 

compounds.

An interesting research area of relevance to the identification of pathologies underlying 

diseases that might be amenable to pharmacological modulation is the design of appropriate 

studies. For example, if the relationships between different potential drug targets and their 

effect on a molecular system or pathway is not known, researchers may have to 

systematically perturb each element in such a system and examine what the effect on the 

system these perturbations have.[14] As one can imagine, such studies can be tedious and 
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laborious. However, recent studies suggest that one can use robotics and AI to conduct such 

experiments and, in fact, anticipate further experiments that might be called for based on the 

results of initial experiments.[15] Experimental infrastructure for pursuing AI-based 

experiments has also been developed, but only for a few select settings.[16, 17]

If an extant drug or compound is not found that could appropriately modulate a target, then 

creating a novel pharmacotherapeutic (i.e., drug) often requires insights obtained from 

materials science in order to make sure the molecular structure of the drug produced has 

favorable properties inside the body. Very recent work suggests that AI can be leveraged to 

identify materials that may not be easily identified with traditional brute-force approaches.

[18, 19] In addition, AI has been used to design new structures, which may be relevant to 

crafting better interventions, whether a drug or mechanical device, as well as aid in the 

selection of appropriate chemical syntheses.[20–22] AI has also been used in studies of very 

basic phenomena, such as particle physics, to probe how materials interact.[23] Interestingly, 

the design of new drugs, for example in the context of refining the structure of a therapeutic 

protein or molecule, could also be greatly facilitated by AI. It has been shown that in many 

design contexts in which optimization of materials and the way they are put together, the use 

of AI can identify superior designs to those based on legacy strategies.[20] This theme of 

harnessing AI to identify ways of optimizing the assembly of materials, or the manner in 

which an objective function of whatever sort is optimized given some starting materials and 

appropriate yet basic principles for assembling them, was on display in the recent 

description of the system for playing the age-old game of GO developed by Google’s 

DeepMind group.[24] Essentially, the system developed at DeepMind was not only able to 

easily beat all human experts as well as other GO-playing systems, but was able to do this by 

identifying strategies and moves that were completely beyond those which humans had used 

to play and try to master the game for centuries.

If a therapeutic target has been identified, then one could potentially pursue compound 

screening studies to identify compounds that modulate the chosen target. Such studies often 

require a particular output or phenotype (e.g., the expression level of a target gene). In the 

absence of such a phenotype, high-content screens, in which many different phenotypes are 

evaluated to see if any of the compounds, often numbering in the thousands or tens of 

thousands, affects any one or some subset of these phenotypes as a sign of its activity. AI 

techniques have been used to identify potential compounds impacting a target in this setting.

[25–27]

Once a therapeutic concept has been defined, relevant drugs or an intervention apparatus 

embodying the concept must be manufactured at scale for distribution. The manufacture of 

drugs and interventions of all sorts have been greatly facilitated by robotics and AI.[28] In 

the context of personalized medicines, it may be that the manufacture of drugs and 

interventions will require nuanced features based on patients’ profiles and therefore have to 

be designed and crafted in real-time as opposed to be created at scale, stored and distributed 

when needed – a topic to be discussed in a later section focusing on ‘Integration and the 

Personalized Medicine Workflow.[29, 30]’
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FIRST-IN-HUMAN (T1) AND PATHOBIOLOGY (P1) STUDIES

Once a drug had been created, it must be shown to safe through Phase I clinical trials, or 

studies that are often referred to as ‘first-in-human-studies’ (T1 in the left panel of Figure 2). 

Such studies focus on safety and are typically pursued on a small number of individuals in 

case there are side-effects. To minimize the risk of exposing individuals to a new drug that 

might cause them harm, insights into the likelihood that individuals with a certain profile 

will have an adverse response are required. Studies that consider genetic factors that 

predispose to responses to drugs (good or bad) have revealed many compelling and 

clinically-useful connections between genetic variants and drug responses. Discovering such 

‘pharmacogenetic’ insights have been greatly enhanced through the use of AI tools applied 

to very large databases with relevant genetic and drug response information.[31, 32]

The design of phase I clinical trials is an ongoing area of research. The fact that only a few 

individuals are enrolled in such trials, and a great sensitivity to the detection of the effects of 

the proposed drug or intervention are of focus, suggests that careful monitoring of the 

subjects enrolled in the trial is required. Extensions of N-of-1 and aggregated N-of-1 trial 

designs could be appropriate for Phase I trials.[33] Although discussed in greater detail in 

the context of vetting the efficacy of a personalized medicine in the section on the 

‘Implementation (T3) and Clinical Assessment (P3) Studies‘ below, such studies can 

leverage massive amounts of data and AI techniques to identify patterns in a patient’s data 

that might be indicative of response to the intervention (see, e.g., Serhani et al.[34]). Table 1 

lists examples of studies that have focused on monitoring a single individual over time to 

explore how they responded to a particular intervention, or how their health status may have 

changed over that time, using various data collection schemes.

In the context of personalized medicine studies, once an individual is found to possess a 

certain pathology, a need to identify how that pathology can be corrected arises (P1 in the 

right hand panel of Figure 2). For many common chronic diseases this is obvious (e.g., for 

someone diagnosed with high blood pressure, providing blood pressure lowering 

medications makes sense). However, nuanced features of the patient, and the optimal way to 

correct the pathology given those nuances, are not often clear. Similar AI-based strategies 

for making diagnoses can be exploited to identify potentially correctable pathologies (P0 in 

the right panel of Figure 2). For example, the company Arterys recently announced the first 

FDA-approved AI-based application to be used in facilitating clinical diagnoses. The Arterys 

system used deep-learning applied to a medical imaging platform to help diagnose heart 

problems.[35] Other systems have been developed that consider more comprehensive 

approaches to understanding a patient’s profiles in a way that could facilitate the choice of 

an intervention.[36]

There is growing sophistication in the way that biopsied material or patient biosamples can 

be studied in a laboratory to identify targets for intervention. For example, emerging induced 

pluripotent stem cell (iPSC) and organoid technologies have shown great promise in yielding 

insights into patient-specific pathologies that could be overcome with specific interventions 

(see Table 2 of Schork and Nazor [6] as well as Rossi et al.[37]). When recently-developed 

single cell assays are combined with the use of organoids even greater resolution concerning 
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pathologies and drug targets can be revealed and AI-based analyses have been shown to have 

great promise in this area.[38]

LATE PHASE HUMAN (T2) AND INTERVENTION CHOICE (P2) STUDIES

If a drug or health product has been shown to be safe and likely to be efficacious in early 

phase trials, then it must be tested for its general utility in the population at large. AI can be 

exploited in relevant large scale population trials that seek to minimize the deployment and 

use of inappropriate drugs or interventions studies for each participant in the trial, as 

described recently by Yauney and Shah.[39] Of great interest in this context are the design 

and conduct of bucket (or variations termed ‘basket’), umbrella and adaptive trial designs.

[40] Although each has unique features to them, a description of basket trials provides the 

general strategy behind each and also points out where AI can be exploited. Essentially 

bucket trials enroll eligible patients, profile them to identify nuanced pathophysiologic 

profiles they possess (e.g., sequencing their tumor DNA in the context of a cancer clinical 

trial), and assign them one of possibly many treatments based on the mechanisms of action 

of the treatments (i.e., put them into one of many treatment ‘buckets’). If the patients 

provided with treatments dictated by their pathophysiologic profiles (i.e., assigned to the 

different baskets) have better outcomes than those provided treatments without recourse to 

the profiling and treatment matching scheme, then one could infer that the strategy or 

‘algorithm’ for matching the treatments to the patients has merit. AI could be of great use in 

not only identifying treatment targets in the patient profiles, but also aid in determining the 

strategy for matching the treatments to the patient profiles. This would especially be the case 

if one could envision the use of many different treatment baskets (for example due to 

considering many treatment combinations or complicated temporal treatment schemes).

In the context of choosing an intervention for a particular individual via the personalized 

medicine paradigm (P2 in the right panel of Figure 1), if available drugs and interventions 

exist then the choice could be based on simply matching the patient’s pathophysiologic 

profile to the mechanisms of action of the drugs, consistent with the underlying theme 

governing basket trials. If the choice is not obvious, then one could leverage personalized 

drug screening strategies using biopsies or biomaterials obtained from the patient, as 

suggested by Kodack et al. in the context of cancer.[41] These, and more general, 

personalized drug screening strategies have been developed and could benefit from AI 

techniques to find patterns of relevance in the data that could indicate which drug or 

intervention is the most optimal.[42, 43]

IMPLEMENTATION (T3) AND CLINICAL ASSESSMENT (P3) STUDIES

If a drug or health product has been shown to benefit individuals in the general population, 

then considerations about the routine implementation and/or use of the product arise (T3 in 

the left side of Figure 2). Implementation can come in many forms. For example, if a drug 

shows sufficient proof to be safe and efficacious it can be approved for use by regulatory 

agencies such as the FDA and become embedded in clinical practice. Of greater relevance to 

AI is the implementation of insights that might benefit physicians with respect to 

intervention choices when confronted with patients with unique profiles (e.g., implementing 
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a treatment strategy of the type tested in a basket trial). Implementing such insights require 

codifying and providing them to physicians through electronic medical record (EMR) 

systems typically used to convey patient information to physicians.[44] Implementation of 

AI-based insights is a major topic of discussion among pathologists since they are typically 

responsible for evaluating evidence that a patient has particular condition, as well as pointing 

out nuances associated with that condition that may require special attention when 

intervention decisions are made.[45] The provision of ‘decision support’ information to 

physicians and health care workers – especially that derived from AI-based analyses – opens 

up a number of thorny ethical issues, however, such as who to blame if the use of the 

decision support leads to poorer outcomes (i.e., the algorithm and its developers or the users 

who may be using it inappropriately).[46]

One important element of the implementation of AI-based decision support tools in EMR 

systems is that as new patient data are collected, the prediction models they are based on can 

be improved. Thus, ‘Learning Systems’ can be created that continually evolve and improve 

based on the accrual of more patient information and outcomes associated with the patients 

provided interventions based on the algorithms behind the learning systems’ 

recommendations.[47–49] Sophisticated AI-techniques can be used to enhance this learning, 

including aggregating data from multiple EMRs or sources.[50]

To vet the utility of an intervention for an individual patient (P3 in the right side of Figure 

2), N-of-1 trials can be pursued (and could, as noted previously, be exploited in drug 

development phase I clinical trials)[33, 51]. AI techniques can be used to identify patterns in 

data collected on the patient – say through wireless sensors – that might be indicative of that 

patient’s response (or lack thereof) to the intervention.[34] The studies listed in Table 1 

provide example published N-of-1 studies focusing on an individual’s response to a 

treatment or an individual undergoing monitoring for health status changes.

POST-DEPLOYMENT EVALUATION (T4) STUDIES AND WAREHOUSING (P4)

After the implementation and adoption of a new drug, treatment intervention or health 

product, continuous monitoring of that product must occur in order to determine if either 

unanticipated side effects are occurring or the product can be improved or replaced for 

various reasons (T4 in the left side of Figure 2). AI-based learning systems of the type 

mentioned in the previous section provide an excellent foundation for such monitoring, and 

early experiences with such systems bear this out.[52–54] In addition to the creation of 

learning systems, there are many initiatives to aggregate data on patients and patient 

materials to enable data mining and AI-based analyses, for example in cancer contexts,[55] 

but also for more general settings as well.[56, 57]

The implementation of AI-based products, such as EMR decision support tools and learning 

systems, will also affect doctor/patient relationships in profound ways. This is especially 

likely with respect to discussions around the justification of intervention choices,[58] but 

also with respect to discussions about predictions concerning future health care issues.[59] 

Large, government-sponsored national initiatives are being pursued to identify patterns 

among individuals tracked for health care-related phenomena that might be useful in clinical 
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and public health practices in the future, such as the UK Biobank initiative in the United 

Kingdom and the ‘All-of-Us’ study in the United States.[60, 61] These studies raise 

important questions about the ethics, legal and social implications of aggregating data on 

individual patients for the purposes of benefitting individuals who may need focused care 

going forward.[61]

INTEGRATION AND THE PERSONALIZED MEDICINE WORKFLOW

Implicit in the P0-P4 personalized medicine translational workflow that has common 

elements with the T0-T4 drug and health product development workflow (Figure 2), is the 

suggestion that what is important for these workflows to function properly is to make sure 

the transitions from each stage of the workflow are eased and enabled. This can be difficult 

since the expertise and technologies needed at each stage are very different, often leading to 

their independent pursuit. However, emerging strategies and concepts in the way 

personalized medicine is practiced, coupled with the use of AI techniques, could lead to 

more holistic and efficient ways of treating individual patients that run through the entire P0-

P4 workflow.[6]

Thus, the ideal setting for personalized medicine and health care is one in which the 

diagnoses, treatment and follow-up monitoring of individual patients is streamlined into a 

single process with very smooth and coordinated transitions from one relevant activity or 

sub-process to another. A good paradigm for this involves the creation of cell replacement 

therapies for a wide variety of conditions.[62, 63] Thus, for example, in certain 

immunotherapeutic-oriented cell replacement therapies for cancer, a patient’s tumor is 

profiled for the existence of unique ‘neo-antigens’ or mutations that might attract the host’s 

own immune system to attack cells harboring those mutations. If such neo-antigens are 

found, then cells from either a donor (allogeneic transplantation) or from the patient him or 

herself (autologous transplantation) are harvested and sensitized to recognize the neo-

antigens. The basic idea is that these cells will attract the host’s immune cells towards the 

tumor cells harboring the neo-antigens when introduced into the patient’s body.[62, 63] 

Since the creation and manufacture of the cells cannot be pursued in advance of knowing 

what neo-antigens are present in the patient’s tumor, they must be created in near real time. 

The production of treatments in real-time based on the patient’s unique and immediate needs 

is termed the ‘magistral’ production of treatments, as opposed to the traditional or ‘officinal’ 

production of treatments.[29, 30] Magistral production of drugs is likely to be a reality for 

personalized medicine in many settings, even beyond cancer, since it would be too difficult 

to anticipate all the treatments (e.g., cells sensitive to every neo-antigen profile) and 

stockpile them for use in the future, as is assumed in the case with the officinal production of 

treatments.

To advance and generalize this concept of the magistral production of personalized medicine 

treatments, one could imagine leveraging AI-powered robotics technologies to enable the 

efficient and precise manufacture of relevant treatments.[64] 3D printing of treatments also 

has the potential to facilitate the real-time production of treatments in near real time, as the 

first US FDA-approval for a 3D printed drug was made in 2015.[65] One could also envision 

the immediate conduct of N-of-1 trials involving AI-based pattern discovery with 
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sophisticated treatment outcome monitoring devices after a treatment has been crafted to 

assess its impact on the patient.[33, 51, 66] Further, one could potentially exploit AI-based 

simulation studies to anticipate directions that a treatment strategy might take.[67]

LIMITATIONS OF AI IN ADVANCING PERSONALIZED MEDICINE

There are many limitations to the use of AI in the development of personalized medicines. 

We briefly discuss some of the more salient issues. First, there is an argument that many big 

data analyses that combine information on many individuals to identify patterns that reflect 

population-level relationships between data points do not get at important individual-level 
relationships.[68] This potential lack of ‘ergodicity’ could result in models that are not 

useful for making individual treatment decisions. For example, in terms of identifying trends 

in a target individual’s health data that could indicate a health status change for that target 

individual based on data collected on a large number of individuals, as more data points are 

collected on each individual, any predictions of the target individual’s heath trajectory 

should rely more on the legacy data points on that target individual and less on the 

population level data.[69] Sensitizing AI techniques to this fact is crucial for advancing 

personalized medicine.

Second, there is a need to vet or test the utility of health care products rooted in AI. This is 

motivated by the inconsistent results observed with the use of some AI or big data based 

health care products, such as IBM’s Watson treatment decision support system. [70, 71] 

Testing such systems via traditional randomized clinical trials has been discussed in the 

literature, and some AI-based decision support tools have in fact been shown to pass muster 

in bona fide clinical trials.[72] A potential need for vetting, for example, AI-based decision 

support products, like IBM’s Watson, is that if the underlying system’s decision making 

capability is trained on an incomplete or biased data set, then the recommendations or 

predictions it provides are likely to be unreliable. A rather infamous case of this involves 

Google’s system for prediction flu outbreaks.[73] In addition, in the context of basket trials, 

in which the underlying scheme for matching drugs to patient profiles is being tested, if the 

scheme is shown not work better than standard of care or an alternative way of matching 

drugs to patient profiles, then a couple of questions could be raised. It could be that the 

drugs are ineffective, or some subset are ineffective, essentially negatively impacting the 

overall performance of the matching scheme. Alternatively, it could be that the drugs work, 

but simply are not matched properly to the patient profiles; i.e., the matching algorithm or 

scheme is simply wrong. These questions were raised in the context of the SHIVA trial – a 

bucket trail in which the drug matching scheme was shown not to benefit the patients any 

more than legacy ways of treating patients.[74]

Third, it may be that the best way to vet at least decision support tools, is not to test them in 

randomized clinical trials, but rather to implement them in learning systems in which the 

decision support rules or algorithms are continuously updated.[66, 75–78] However, this 

would not only require a lack of bias in the initial data sets used to seed the learning system 

in order to ensure generalizable results, but could also take a lengthy time period for the 

system to evolve into a system with accurate and reliable decision making.
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Fourth, many AI-based decision support products leverage deep learning and neural 

network-based algorithms. Such algorithms can produce very reliable predictions if a large 

enough training set is used, but the connections between the inputs (i.e., data) and the 

outputs (predictions) can be very hard to understand. Thus, the ‘Black Box’ problem 

associated with many AI-based tools can be problematic and lead to a lack of confidence or 

sense of trepidation about relying on the predictions in the real world where real lives are at 

stake.[79] In addition, not all AI techniques are designed to identify causal relationships 

between various input and outputs, but rather mere associations or predictions (i.e., focus on 

correlation and not causation).[80] This may suffice if the goal is to develop accurate 

predictions, but if the goal is to, e.g., identify a drug target that, when modulated, leads to a 

desired effect, then identifying causal relationships is crucial.

FUTURE DIRECTIONS AND CONCLUDING REMARKS

The future contributions of AI in advancing personalized medicine are likely to be very 

pronounced, as this chapter makes clear. Not only will there be greater adoption of AI-based 

health products but such products could be developed and exploit emerging computing 

capabilities such as quantum computing[81, 82] to achieve increased speed and an ability to 

handle larger and larger data sets. These larger data sets are likely to derive from better and 

more sophisticated monitoring health monitoring devices which can be used to gather data to 

seed and key off for the development of more reliable predictions.[83]

In addition to exploiting greater speed and computational efficiency, AI-based health 

products and tools will likely incorporate greater understanding of biology in their 

formulations in the future. Thus, the discovery of simple input/output relationships among 

data points that has been focus of a great deal of AI, machine learning and statistical analysis 

research, could be pursued with constraints that are known to govern phenomena of 

relevance (e.g., known biophysical constraints involving the production of metabolites in a 

biochemical pathway, first principles having to do with Watson-Crick base pairing, etc.).[84, 

85]

Finally, as a closing note, much of the use of AI in the development of personalized 

medicines is focused on the treatment of individuals with overt disease: identifying the 

underlying pathology, determining which interventions might make most sense to provide 

given what is known about that pathology and the mechanism of action of the intervention, 

and testing to see if the intervention works. Thus, the vast majority of AI-based products and 

tools used in advancing personalized medicine focus on the diagnosis, prognosis and 

treatment of individuals. This makes sense as there is a great need for advances and 

efficiency gains in treating patients given the costs of current treatments, especially in the 

context of cancer. However, the application of AI to disease prevention is gaining a great 

deal of attention and traction. For example, AI and machine learning techniques have been 

shown to be useful in the development of ‘polygenic risk scores’ that can be used to identify 

individuals with an elevated genetic risk for disease that could be monitored more closely.

[86–88] In addition, by combining insights into genetic predisposition to disease with 

continuous monitoring to identify early signs of disease, one could potentially stop diseases 

in their tracks before complicated treatments are needed for fulminant forms of the disease 
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manifest.[89, 90] Such monitoring could be greatly enhanced by applying AI techniques to 

novel sensors.[91, 92]

Ultimately, enthusiasm for leveraging AI techniques is not likely to slow down any time 

soon. AI is likely to impact virtually every industry, from manufacturing, to sales and 

marketing, to banking, to transportation. All of these industries can obviously be improved 

with AI playing an important role in the needed innovations. The health care industry is no 

less likely to benefit from AI, as this chapter has made clear, as long as appropriate 

integration and vetting occurs.
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Figure 1. 
Four emerging complementary themes in biomedical science: personalized medicine, 

emerging data-intensive technologies, big data and information technologies (IT) 

infrastructure and artificial intelligence (AI). These technologies can be fuel, and be fueled 

by, AI in all phases of the development (T0-T4) of personalized medicines (see Figure 2).
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Figure 2. 
A representation of the stages in the ‘translation’ of basic insights into clinical useful 

products considered in initiatives such as the Clinical and Translational Science Award 

(CTSA) initiative overseen by the National Center on Advancing Translational Science of 

the United States National Institutes of Health (NCATS; left panel;[5]). An analogous 

representation of the stages in the diagnosis and treatment of an individual patient are 

provided in the right hand panel.
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